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Using Spatial Lag, Spatial Error, and Geographically Weighted Regression to Predict 
Median House Values in Philadelphia Block Groups 

 

1. Introduction 
One of the most well-liked research areas in the study of real estate value is house price 

prediction, which is important because it can aid in government and urban planning decision-
making. In the previous report, we conducted OLS regression to examine the relationship 
between median house values and several neighborhood characteristics, including the number 
of households living in poverty, the percentage of individuals with a bachelor’s degree or 
higher, the percent of vacant houses, and the percent of single house units. However, OLS 
regression can be inappropriate when dealing with datasets that have a spatial component. 
Because spatially autocorrelated OLS residuals will lead to systematic under-prediction or over-
prediction in certain parts of the study region, furthermore, the significance estimates for the β 
coefficients in OLS may be incorrect. 
 

Our goal in this research is to investigate any spatial autocorrelation in neighborhood 
variables and investigate ways to potentially enhance the findings. Using Philadelphia data at the 
Census block group level, we will use GeoDa and ArcGIS to run spatial lag, spatial error and 
geographically weighted regression to see whether these methods can explain the spatial 
autocorrelation that might remain in the OLS residuals., using Philadelphia data at the Census 
block group level. 

2.  Methods 
It is believed that Waldo Tobler’s (1970) conclusion of the first law of geography, 

“Everything is related to everything else, but near things are more related than distant things. 
That is values of a variable at nearby locations are related to one another. Spatial 
autocorrelation is similar to correlation but focuses more on the relationships of values within a 
single variable and variables nearby. A variable is considered having positive spatial 
autocorrelation if it has related values with variables close in space.  

 
a)  A Description of the Concept of Spatial Autocorrelation 

Moran’s I (1950) is perhaps the most widely used method of testing for spatial 
autocorrelation or spatial dependencies which can be defined mathematically as below: 
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Where: 
• x̅  is the mean of the variable X 
• Xi is the variable value at a particular location i 
• Xj is the variable value at another location j 
• Wij is a weight indexing location of i relative to j  
• n is the number of observations (points or areal units) 

When there is strong positive autocorrelation, Moran’s I tend to approach large positive 
values (close to 1), which means similar values tend to cluster together. On the contract, when 
there is strong negative autocorrelation, Moran’s I tend to approach large negative values 
(close to -1), which means similar values tend to dispersion. Moran's I's expected value is -1/(n-
1) which means that there is no spatial autocorrelation, where n is the total number of 
observations. 
 

When there are n observations, an n times n table can be generated to summarize all the 
pairwise spatial relationships in the dataset. This table is called a weight matrix which can be 
used in the estimation of spatial regression and the calculation of spatial autocorrelation as 
well. Usually, it is better to try several different weight matrices to guarantee that the results 
are not an artifact of the matrix which is being used. In this project, we will use GeoDa to 
generate a Queen contiguity 1720 * 1720 weight matrix with data set which contains 1720 
block groups. That is all 1720 block groups that cross with census block group A at a point, or a 
segment is considered to be A's neighbors. 
 

With the hypothesis below, Moran’s I is used to test whether spatial dependence exists 
and whether spatial autocorrelation is significant: 

• Ho: No spatial autocorrelation, which means there is no spatial autocorrelation within 
median house values.  

• Ha1: There is a positive spatial autocorrelation within median house values. 
• Ha2: There is a negative spatial autocorrelation within median house values. 

 
To compute Moran’s I for house price variables, the first step is to randomly shuffle the 

values of the house price variables, and then to calculate Moran’s I for this shuffled map, then 
repeat the shuffling for another 999 times and calculate Moran’s I each time. Next, put the total 
1000 Moran’s I values in descending order and compare the Moran’s I value for the observed 
house price variable with the Moran’s I values for the random permutations. 
 

To better understand spatial autocorrelation, Luc Anselin created the Local Indices of 
Spatial Autocorrelation (LISA), which can describe the degree to which data at sites close to i 
are related to i. For each location i, the local Moran’s I is computed. In general, the average 
deviation of a value's nearby values is compared to a value's divergence from the global mean 
at position i. The block groupings are divided into four categories by the analysis: 
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• High Xi & High Xj + SA: The deviation of the ith location from the global mean and the 
average deviation of neighborhood locations j from the global mean are both positive. It 
suggests that there is positive autocorrelation. 

• Low Xi & High Xj – SA: The deviation of the ith location from the global mean is negative 
while the average deviation of neighborhood locations j from the global mean is 
positive. It suggests that there is negative autocorrelation. 

• Low Xi & Low Xj + SA: The deviation of the ith location from the global mean and the 
average deviation of neighborhood locations j from the global mean are both negative. 
It suggests that there is positive autocorrelation. 

• High Xi & Low Xj – SA: The deviation of the ith location from the global mean is positive 
while the average deviation of neighborhood locations j from the global mean is 
negative. It suggests that there is negative autocorrelation. 

* Here SA refers to spatial autocorrelation 
 

Local LISA statistic (i.e., Local Moran’s I) could be positive or negative at location i, 
statistical significance testing hypothesis is generated as following: 
Ho: When the local Moran's I is near to 0, there is no (local) spatial autocorrelation at point i. 
Therefore, there is no correlation between the values of our variable at location i and those of 
its neighbors at site j. 

Ha: There is positive or negative spatial autocorrelation at location I when local Moran’s I is 
not 0. That is, values of our variable at location i are very similar to (+SA) or starkly different 
from (-SA) from the nearby locations j. 

 
b)  A Review of OLS Regression and Assumptions  

The OLS regression is often used to examine the relationship between a variable of 
interest and one or more explanatory variables. It allows us to calculate the amount of which 
dependent variable changes when a predictor variable changes by one unit (holding all other 
predictors constant). In previous report, we have conducted multiple regression and assumed 
that all the predictors we used were linearly correlated with the dependent variable. Then we 
ran stepwise regression to see the significance of each predictor and checked the problem of 
multicollinearity. Finally, we use cross-validation to predict the performance of our model. 
 
This OLS regression is based on assumption below: 

• There are linear relationships between dependent variable y and each of the predictors 
x. 

• Residuals are normally distributed. 
• Homoscedasticity - the variance of the residuals is constant regardless of the value of 

each x (or the value of y predicted by the model). 
• Observations are independent. That is, there should be no spatial, temporal or other 

forms of dependence in the data. 
• Predictors should not be strongly correlated with each other. 
• No fewer than 10 observations per predictor. 
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The problem with residuals arises when the data has a spatial component, that is the 
assumption that observations/errors are random/independent often doesn’t hold. Computing 
Moran’s I of the residuals is a way to test OLS residuals for spatial autocorrelation. An ideal 
Moran’s I should be close to 0. Another way to test OLS residuals for spatial autocorrelation is 
to regress 𝜀𝜀̂ on nearby residuals W𝜀𝜀̂.  In this report, nearby residuals refer to residuals at 
neighboring block groups which are defined by the Queen matrix. Ideally, there should be no 
relationship between 𝜀𝜀̂ and W𝜀𝜀̂, that is the coefficient of W𝜀𝜀̂ denoted by λ (as opposed to β1) is 
not significantly different from 0. ( λ can range between -1 and 1). 
 

We can test additional regression hypotheses in GeoDa, the program we're using to do 
your OLS regression. The first is the homoscedasticity assumption, which is related to the 
assumption of error independence. We assumed that the regression residuals should be 
random noise. However, the variance in the residuals may change with values of another 
variable, that is heteroscedasticity. We can first save OLS residuals and anticipated values and 
perform a residual-by-predicted scatter plot in GeoDa to test for heteroscedasticity. Then, 
GeoDa offers the Breusch-Pagan Test, the Koenker-Bassett Test, and the White Test as three 
distinct diagnostics for heteroscedasticity. The Breusch-Pagan Test and the Koenker-Bassett 
Test will be used. The null hypothesis here is that of homoscedasticity (No heteroscedasticity). 
If the p-value is less than 0.05, then we can reject the null hypothesis for the alternate 
hypothesis of heteroscedasticity. The assumption of the normality of the residual/error is 
another one. The Null Hypothesis that the residuals are from a normal distribution is tested 
using the GeoDa Jarque-Bera test. If p is larger than 0.05, then we fail to reject the null 
hypothesis. 
  
c)  Spatial Lag and Spatial Error Regression  

We will cover two spatial regression models, spatial lag and spatial error regressions, 
available in GeoDa. The geographic regression models incorporate factors, known as rho (ρ) in 
the spatial lag model and lambda (λ) in the spatial error model, which account for spatial 
autocorrelation in addition to the independent variables entered the OLS model.  
 

First, in spatial lag model. Assumes that a dependent variable's value at one place will be 
related to its value at surrounding locations as defined by the weights matrix W. This indicates 
that the dependent variable's spatial lag is a predictor in the model. Here, the y-lag variable 
Wy's coefficient is ρ(rho), just as the variable X1's coefficient is β1. 

 
𝑂𝑂𝑂𝑂𝑂𝑂:𝑦𝑦 = 𝛽𝛽0⏟

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

+ 𝛽𝛽1𝑋𝑋1+. . . +𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛�����������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

+ 𝜀𝜀⏟
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆:𝑦𝑦 = 𝜌𝜌𝜌𝜌𝜌𝜌�
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

+ 𝛽𝛽0⏟
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶)

+ 𝛽𝛽1𝑋𝑋1+. . . +𝛽𝛽𝑛𝑛𝑋𝑋𝑛𝑛�����������
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

+ 𝜀𝜀⏟
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

 

In this case, spatial lag equation is written as following: 
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𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝜌𝜌𝑊𝑊𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
+ 𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜀𝜀 

 
Next, in spatial error model. Takes for granted that the residual at one place is connected 

to residuals at other locations, as defined by the weights matrix W. We have a two-step (stage) 
regression practically: First, our OLS model, which regresses Y on the predictors, is first 
performed. Second, we decompose the residuals (ε) into two parts: one with a spatial pattern 
(λWε), and one that is just random noise. This is done by regressing the residuals on the nearest 
neighbor residuals, which removes the spatial information from the OLS residuals (u). 
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In this case, spatial error equation is written as following: 
 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜀𝜀 

𝜀𝜀 = 𝜆𝜆𝑊𝑊𝜀𝜀 + 𝜇𝜇 
 
 
𝑦𝑦 = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 + 𝛽𝛽4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝜆𝜆𝑊𝑊𝜀𝜀 + 𝜇𝜇 
 

Except for the condition of spatial independence of observation, both the spatial lag and 
the spatial error regression models require the assumptions that are needed for OLS indicated 
in section b. Regression with spatial lag and spatial error aims to account for the possibility of 
spatial dependencies in the residuals or the data. The residuals produced by spatial lad and 
spatial error approaches may no longer be spatially autocorrelated or less heteroscedastic. 
However, we still presumptively assume that all the predictors are linearly connected to the DV, 
that the residuals are normal, and that multicollinearity should not exist. 

To determine if spatial models outperform OLS, we will compare the results of spatial lag 
regression with OLS and the results of spatial error regression with OLS. The following three 
criteria make up the benchmark for comparison: 

• Akaike Information Criterion (AIC) /Schwarz Criterion (SC). The goodness of fit of an 
estimated statistical model is measured by the AIC and SC. They can be used to illustrate 
the trade-off between the precision and complexity of the model and are a relative 
measure of the information lost when a certain model is employed to explain reality. 
The better the fit in GeoDa, the lower the AIC and SC. 
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• Log Likelihood is associated with the maximum likelihood method of fitting a statistical 
model to the data and estimating model parameters. Maximum likelihood chooses the 
model parameter values that make the data "more likely" than they would be given any 
other parameter value. The higher the log-likelihood, the better the model fit. Log 
likelihood is often exclusively used to compare nested models. Because the spatial 
regression model may be reduced to OLS when the spatial factor is dropped, OLS is a 
particular case of the spatial lag and spatial error models. However, because spatial lag 
and spatial error are not special cases of one another, we are unable to compare them 
using the log likelihood ratio. 

• Likelihood Ratio Test compares the OLS model with the spatial model. The null hypothesis 
is that the OLS model is not a better specification than the spatial lag or spatial error 
model. If P 0.05, the null hypothesis can be successfully rejected, then it can be concluded 
that the spatial lag or spatial error model performs better than the OLS model. 

Another way to compare the OLS results with spatial lag and spatial error results is by looking 
at Moran’s I of regression residuals. The closer Moran’s I to zero, the less spatial autocorrelation, 
the better the model. 
 
d)  Geographically Weighted Regression 
 

We will do Geographically Weighted Regression (GWR) analyses in ArcGIS. The OLS 
regression, spatial lag or error regression all assume that dealing with spatial stationarity, that is 
the assumption that modeled relationships are constant across space. Although required, this 
presumption is probably untrue in reality. Recognizing that the problem is spatial non-
stationarity, we can say that we have several local regressions rather than a single global 
regression for each point. This is Geographically Weighted Regression (GWR). According to 
Simpson's paradox, a trend may be present in numerous groups of data yet vanish or change 
direction when the groups are combined. The GWR result could differ or even reverse from the 
global regression result. 
 

For each observation i (i = 1…n), the GWR model's equation performs OLS regression on i 
and nearby observations x (suppose there are a total of m observations). The closer the 
observations to i, the higher the weight: 

 
In this report, equation can be written (i=1...n): 
 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝛽𝛽𝑖𝑖0 + 𝛽𝛽𝑖𝑖1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑖𝑖2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽𝑖𝑖3𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
+ 𝛽𝛽𝑖𝑖4𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝜀𝜀𝑖𝑖 

Where, 
• βi1 = when PCBACHMORE increases 1%, the LNMEDHVAL would increase βi1 unit, 

MEDHVAL increase by (e^βi1-1)*100%, holding other variables constant. 
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• βi2 = when PCTVACANT increases 1%, the LNMEDHVAL would increase βi2 unit, 
MEDHVAL increase by (e^βi2-1)*100%, holding other variables constant. 

• βi3 = when LNNBELPOV100 increases 1 unit(NBELPOV100 increases 1 household), the 
LNMEDHVAL would increase βi3 unit, MEDHVAL increase by (1.01^βi3-1)*100%, holding 
other variables constant. 

• βi4 = when PCTSINGLES increases 1%, the LNMEDHVAL would increase βi4 dollars, 
MEDHVAL increase by (e^βi4-1)*100%, holding other variables constant. 

• εi = the residuals 

 
To perform a regression for each location: 

• First it requires multiple observations (locations) to run a regression, not just a single 
observation (location) i. 

• GWR does the regression using additional observations from the dataset, giving more 
weight to observations near to location i. 

• The weight of an observation varies with location i. 
• The assessment of the location i's parameters is more influenced by observations that are 

closer to i. 
 

The radius of the circular area is the bandwidth when the weighting function generates 
points in a circle centered on the target location. There are two types of bandwidth depending 
on whether or not the distance between regression point i and the observations stays constant. 
Around each point i the number of observations will vary, but the fixed bandwidth distance h 
(and the area) will not change. The distanceij is the separation between data point j and 
regression point i. Around each point i the number of observations will vary, but the fixed 
bandwidth distance h (and the area) will not change. While adaptive bandwidth h means that 
number of observations will remain fixed but the area will not be the same. Results are 
significantly impacted by the weights' underlying assumptions. When the distribution of 
observations is largely consistent over space, a fixed bandwidth kernel will be more suited (e.g., 
number of neighbors, size). When the distribution varies throughout space, an adaptive 
bandwidth kernel is acceptable (i.e., events are clustered, or polygons are heterogeneously 
shaped or sized). After choosing a kernel type, optimization removes part of the uncertainty, but 
robustness checks are still required. 
 
A lot of OLS assumptions mentioned above still hold in GWR: 

• Normality of residuals. 
• Homoscedasticity. 
• No multicollinearity (GWR requires at least 300 observations). Results are unreliable in 

global regression models like OLS when two or more variables display multicollinearity. 
To account for each feature in the dataset, GWR creates a local regression equation. 
There will most likely be an issue if the value of an explanatory variable spatially clusters 
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significantly. Additionally, multicollinearity issues may arise when more than two 
variables exhibit comparable clustering patterns in each area. 

• Dependent variable may not normal, but it is acceptable when residuals close to normal. 

In a global model such as OLS, it is usual to test whether the parameter estimates are 
significantly different from zero. This can be accomplished with a t-test, the t-statistics and their 
associated p-values are usually provided on the output. However, p-values are not part of the 
GWR output. There could be hundreds, or thousands of tests needed to determine whether 
parameters are locally significant considering that there is one set of parameters and one set of 
standard errors associated with each regression point. Recall the type I error concept: if the 
0.05 significance level is utilized, we would anticipate 5 out of 100 tests to be significant, but 
they are not! (Also, type II error might lead us to anticipate that certain outcomes that are 
significant are actually not significant.) For a model with four predictors and 2000 regression 
points, there would be 10,000 significance tests (five per point, one for the intercept and four 
for the predictors), and we would anticipate 500 significant tests 

 

3. Results   
a)  Spatial Autocorrelation 

First, we calculated the global Moran’s I values for the dependent variable LNMEDHVWL 
and presented a scatter plot of it. In Figure 1&2, we see that Moran’s I for LNMEDHVAL value is 
0.794, meaning that LNMEDHVAL has a high spatial autocorrelation. 

 
We also conducted the random permutations test on the result. It shows the Moran’s I for 

the Median House Value is much higher than the Moran’s I for all 999 random permutations. 
Again, we can say that the LNMEDHVAL is significantly spatial autocorrelated, and we can reject 
the null hypothesis that there is no spatial autocorrelation of the dependent variable. 

 
 

Figure 1: Geoda Moran’s I scatter plot & permutation plot 
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Figure 2: R Moran’s I scatter plot & permutation plot 

 
From the maps, we can see most of Philadelphia is not significant. They are the south area, 

the east area, the northwest area, and the northeast area. The low-low areas mainly cluster in 
north Philadelphia, and part of the south and west Philly. The high-high areas mainly cluster in 
northwest, northeast, and part of south Philly. The high-low areas and low-high areas are 
distributed more separately, most of them appear in south Philadelphia. 

Comparing the significance map with the cluster map, in Figure 3&4, the high-high areas 
are more significant in northwest and south Philly, meaning that in these areas, the dependent 
variable has higher spatial autocorrelation. The low-low areas are more significant in north Philly, 
also meaning that it has high spatial autocorrelation in that area. 
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Figure 3: Geoda Significance Map and Cluster Map 
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Figure 4: R Significance Map and Cluster Map 
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b) A Review of OLS Regression and Assumptions: 
Table 1.1：GEODA OLS Regression Result 
-------------------------------------------------------------------------- 
SUMMARY OF OUTPUT: ORDINARY LEAST SQUARES ESTIMATION 
Dependent Variable  :   LNMEDHVAL  Number of Observations: 1720 
Mean dependent var  :      10.882  Number of Variables   :    5 
S.D. dependent var  :     0.62972  Degrees of Freedom    : 1715  
 
R-squared           :    0.662300  F-statistic           :     840.869 
Adjusted R-squared  :    0.661513  Prob(F-statistic)     :           0 
Sum squared residual:     230.332  Log likelihood        :    -711.493 
Sigma-square        :    0.134304  Akaike info criterion :     1432.99 
S.E. of regression  :    0.366475  Schwarz criterion     :     1460.24 
Sigma-square ML     :    0.133914 
S.E of regression ML:    0.365942 
 
-------------------------------------------------------------------------- 
       Variable      Coefficient      Std.Error    t-Statistic  Probability 
-------------------------------------------------------------------------- 
          CONSTANT       11.1138      0.0465318        238.843     0.00000 
         LNNBELPOV    -0.0789035      0.0084567        -9.3303     0.00000 
        PCTBACHMOR     0.0209095    0.000543184        38.4944     0.00000 
        PCTSINGLES    0.00297695    0.000703155        4.23371     0.00002 
         PCTVACANT    -0.0191563    0.000977851       -19.5902     0.00000 
-------------------------------------------------------------------------- 
 

Table 1.2： R OLS Regression Result 
-------------------------------------------------------------------------- 
lm(formula = LNMEDHVAL ~ LNNBELPOV + PCTVACANT + PCTBACHMOR +  
PCTSINGLES, data = shp@data) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-2.25817 -0.20391  0.03822  0.21743  2.24345  
 
Coefficients: 
-------------------------------------------------------------------------- 
              Estimate Std. Error t value             Pr(>|t|)     
(Intercept) 11.1137781  0.0465318 238.843 < 0.0000000000000002 *** 
LNNBELPOV   -0.0789035  0.0084567  -9.330 < 0.0000000000000002 *** 
PCTVACANT   -0.0191563  0.0009779 -19.590 < 0.0000000000000002 *** 
PCTBACHMOR   0.0209095  0.0005432  38.494 < 0.0000000000000002 *** 
PCTSINGLES   0.0029770  0.0007032   4.234            0.0000242 *** 
-------------------------------------------------------------------------- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.3665 on 1715 degrees of freedom 
Multiple R-squared:  0.6623, Adjusted R-squared:  0.6615  
F-statistic: 840.9 on 4 and 1715 DF,  p-value: < 0.00000000000000022 
log Lik                                      -711.4933 (df=6) 
studentized Breusch-Pagan test               p-value  0.00000001102 
White's test result                          P-value: 0 
Jarque Bera Test X-squared = 778.96, df = 2, p-value < 0.00000000000000022 
-------------------------------------------------------------------------- 
 

We regressed the LNMEDHVAL on PCTSINGLES, PCTBECHMOR, PCTVACANT, and 
LNNBELPOV100. The p-value for all these four predictors is less than 0.05, meaning that they 
are all statistically significant. From the adjusted R-squared, we see that 66% of the variance in 
LNMEDHVAL has been explained by the model. 

 
From the results of the Breusch-Pagan test, the studentized Breusch-Pagan test, and the 

Koenker-Bassett test, the p-values are all less than 0.05, so we can reject the null hypothesis for 
the alternate hypothesis of heteroscedasticity. The results from the 3 tests are consistent with 
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each other, indicating a problem of heteroscedasticity. The normality of residuals is tested from 
the Jarque-Bera test, the p-value of it is close to zero, so we can reject the Null Hypothesis of 
normality for the alternative hypothesis of non-normality, which is also problematic. 

 
Figure 5: the scatterplot of OLS_RESIDU by WT_RESIDU 

 
The Figure 5 shows the relationship between the OLS residuals and their weighted residuals. 

As the WT_RESIDUAL goes up, the OLS residual goes up. The best fit line has a slope of 0.733, and 
its p-value of it is close to 0, meaning that there is a significant correlation between the residuals 
in their neighbors. 

 
Figure 6: Geoda Moran’s I scatter plot & permutation plot 
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Figure 7: R Moran’s I scatter plot & permutation plot 

 
 

The Moran’s I for the OLS residuals is 0.313, which is higher than-1/1719=-0.0006, indicating 
a significant spatial autocorrelation. The pseudo-p-value from the results of the 999 
permutations is 0.001, which is much lower than 0.05, meaning that the chance of observing a 
Moran’s I of 0.313 is very low if there is no spatial autocorrelation present. So, we can reject the 
null hypothesis that there is no spatial autocorrelation. This is problematic because it means our 
βcoefficients and significance values in the regression may be wrong. 
 
c) Spatial Lag Regression Results  

Table 2.1: GEODA Spatial Lag Regression Results 
-------------------------------------------------------------------------- 
SUMMARY OF OUTPUT: SPATIAL LAG MODEL - MAXIMUM LIKELIHOOD ESTIMATION 
Data set            : Regression Data 
Spatial Weight      : Qweight 
Dependent Variable  :   LNMEDHVAL  Number of Observations: 1720 
Mean dependent var  :      10.882  Number of Variables   :    6 
S.D. dependent var  :     0.62972  Degrees of Freedom    : 1714 
Lag coeff.   (Rho)  :    0.651097 
 
R-squared           :    0.818564  Log likelihood        :     -255.74 
Sq. Correlation     : -            Akaike info criterion :      523.48 
Sigma-square        :    0.071948  Schwarz criterion     :      556.18 
S.E of regression   :    0.268231 
 
-------------------------------------------------------------------------- 
     Variable       Coefficient     Std.Error       z-value    Probability 
--------------------------------------------------------------------------- 
       W_LNMEDHVAL      0.651097      0.0180501        36.0716     0.00000 
          CONSTANT       3.89846       0.201114        19.3843     0.00000 
         LNNBELPOV    -0.0340547     0.00629287       -5.41163     0.00000 
        PCTBACHMOR    0.00851381    0.000521935         16.312     0.00000 
         PCTVACANT    -0.0085294    0.000743667       -11.4694     0.00000 
        PCTSINGLES    0.00203342     0.00051577         3.9425     0.00008 
-------------------------------------------------------------------------- 
REGRESSION DIAGNOSTICS 
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                     DF      VALUE        PROB 
Breusch-Pagan test                       4       220.3884     0.00000 
 
DIAGNOSTICS FOR SPATIAL DEPENDENCE 
SPATIAL LAG DEPENDENCE FOR WEIGHT MATRIX : Qweight 
TEST                                     DF      VALUE        PROB 
Likelihood Ratio Test                    1       911.5067     0.00000 
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-------------------------------------------------------------------------- 

Table 2.2: R Spatial Lag Regression Results 
-------------------------------------------------------------------------- 
Call:lagsarlm(formula = LNMEDHVAL ~ LNNBELPOV + PCTVACANT + PCTBACHMOR +  
    PCTSINGLES, data = shp@data, listw = queenlist) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-1.655421 -0.117248  0.018654  0.133126  1.726436  
 
Type: lag  
Coefficients: (asymptotic standard errors)  
-------------------------------------------------------------------------- 
               Estimate  Std. Error  z value              Pr(>|z|) 
(Intercept)  3.89845505  0.20111357  19.3843 < 0.00000000000000022 
LNNBELPOV   -0.03405466  0.00629287  -5.4116         0.00000006246 
PCTVACANT   -0.00852940  0.00074367 -11.4694 < 0.00000000000000022 
PCTBACHMOR   0.00851381  0.00052193  16.3120 < 0.00000000000000022 
PCTSINGLES   0.00203342  0.00051577   3.9425         0.00008063502 
-------------------------------------------------------------------------- 
 
Log-likelihood: -255.74 for lag model 
AIC: 525.48, (AIC for lm: 1435) 
Likelihood ratio = 911.51, df = 1, p-value < 0.00000000000000022 
Breusch-Pagan test     BP = 210.76, df = 4, p-value < 0.00000000000000022 
studentized Breusch-Pagan test  BP = 51.411, df = 4, p-value = 0.0000000001832 
Jarque Bera Test  X-squared = 2756.9, df = 2, p-value < 0.00000000000000022 
 
-------------------------------------------------------------------------- 

 

We did the spatial lag regression for the LNMEDHVAL and all other four predictors. The p-
value for the W_LNMEDHVAL is close to 0, far less than  0.05, indicating the variable 
W_LNMEDHVAL is significant and the median house value in one area is associated with that of 
the surrounding areas. 

 
For the remaining four predictors, their p-values of them are all less than 0.05. Comparing 

the OLS model and the spatial lag model, the predictors have p-values less than 0.05 in both 
models. The standard error of the four variables in the spatial lag model is higher than that of the 
OLS model, meaning that the samples from the spatial lag model distribute more dispersed. 
Considering the p-value of the Breusch-Pagan test is less than 0.05, so our spatial lag regression 
residuals are still heteroscedastic. 
We use the AIC/SC, the Log-Likelihood, and the Likelihood Ratio Test to compare the two models. 
The AIC and the SC results of the OLS model are much higher than that of the spatial lag model, 
indicating that the spatial lag model is a better fit than OLS. The Log-Likelihood value of the spatial 
lag model is higher than that of the OLS model, again indicating the spatial lag is a better one. In 
the Likelihood Ratio test, the p-value is less than 0.05, so we can reject the null hypothesis and 
state the spatial lag model is better than the OLS model. 
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Figure 8: Geoda Moran’s I scatter plot & permutation plot 
 

 
Figure 9: R Moran’s I scatter plot & permutation plot 

 

 
The Moran’s I for the spatial lag model is -0.082, closer to zero than that of the OLS model, 

suggesting that there seems to be less spatial autocorrelation in these residuals than in OLS 
residuals. The pseudo-p-value of the 999 random permutation test for both the spatial lag model 
and the OLS model is 0.001, indicating that there are spatial autocorrelations in both models. 
However, according to the Moran’s I scatter plot and the residual histogram, both are much 
closer to the ideal Moran’s I for random distribution, meaning that there’s less autocorrelation 
in the spatial lag residuals than in OLS residuals. 
In general, according to all the above analyses, the spatial lag model does better than the OLS 
model in explaining the relationship between the dependent variable and the predictors. 
 
d) Spatial Error Regression Results  

Table 3.1 : GEODA Spatial Error Regression Results 
-------------------------------------------------------------------------- 
SUMMARY OF OUTPUT: SPATIAL ERROR MODEL - MAXIMUM LIKELIHOOD ESTIMATION  
Data set            : Regression Data 
Spatial Weight      : Qweight 
Dependent Variable  :   LNMEDHVAL  Number of Observations: 1720 
Mean dependent var  :   10.882000  Number of Variables   :    5 
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S.D. dependent var  :    0.629720  Degrees of Freedom    : 1715 
Lag coeff. (Lambda) :    0.814918 
 
R-squared           :    0.806957  R-squared (BUSE)      : -  
Sq. Correlation     : -            Log likelihood        : -372.690368 
Sigma-square        :   0.0765508  Akaike info criterion :     755.381 
S.E of regression   :    0.276678  Schwarz criterion     :     782.631 
 
-------------------------------------------------------------------------- 
       Variable       Coefficient     Std.Error       z-value    Probability 
-------------------------------------------------------------------------- 
          CONSTANT       10.9064      0.0534678        203.981     0.00000 
        PCTBACHMOR    0.00981293    0.000728964        13.4615     0.00000 
        PCTSINGLES    0.00267792    0.000620832        4.31343     0.00002 
         PCTVACANT   -0.00578308    0.000886701       -6.52201     0.00000 
         LNNBELPOV    -0.0345341     0.00708933       -4.87127     0.00000 
            LAMBDA      0.814918       0.016373        49.7719     0.00000 
-------------------------------------------------------------------------- 
REGRESSION DIAGNOSTICS 
DIAGNOSTICS FOR HETEROSKEDASTICITY  
RANDOM COEFFICIENTS 
TEST                                     DF      VALUE        PROB 
Breusch-Pagan test                       4       210.9923     0.00000 
 
DIAGNOSTICS FOR SPATIAL DEPENDENCE  
SPATIAL ERROR DEPENDENCE FOR WEIGHT MATRIX : Qweight 
TEST                                     DF      VALUE        PROB 
Likelihood Ratio Test                    1       677.6059     0.00000 
-------------------------------------------------------------------------- 

Table 3.2 : R Spatial Error Regression Results 
-------------------------------------------------------------------------- 
Call: errorsarlm(formula = LNMEDHVAL ~ LNNBELPOV + PCTVACANT + PCTBACHMOR +  
    PCTSINGLES, data = shp@data, listw = queenlist) 
 
Residuals: 
      Min        1Q    Median        3Q       Max  
-1.926477 -0.115408  0.014889  0.133852  1.948663  
 
Type: error  
Coefficients: (asymptotic standard errors) 
--------------------------------------------------------------------------  
               Estimate  Std. Error  z value              Pr(>|z|) 
(Intercept) 10.90643419  0.05346781 203.9813 < 0.00000000000000022 
LNNBELPOV   -0.03453407  0.00708933  -4.8713      0.00000110882576 
PCTVACANT   -0.00578308  0.00088670  -6.5220      0.00000000006937 
PCTBACHMOR   0.00981293  0.00072896  13.4615 < 0.00000000000000022 
PCTSINGLES   0.00267792  0.00062083   4.3134      0.00001607387769 
-------------------------------------------------------------------------- 
Lambda: 0.81492, LR test value: 677.61, p-value: < 0.000000000000000222 

 
AIC: 759.38, (AIC for lm: 1435) 
Likelihood ratio = 677.61, df = 1, p-value < 0.00000000000000022 
Breusch-Pagan test  BP = 23.213, df = 4, p-value = 0.0001148 
studentized Breusch-Pagan test  df = 4, p-value = 0.271 
Jarque Bera Test X-squared = 3507, df = 2, p-value < 0.00000000000000022 
-------------------------------------------------------------------------- 

 
We did the spatial error regression for the LNMEDHVAL and all other four predictors. The 

LAMDA term is around 0.81, which is close to 1, and the p-value for it is close to 0, far less than 
0.05, meaning that the correlation between the OLS residuals and their neighbor residuals is 
significant. Comparing the spatial error results with the OLS results, we can find the remaining 
terms in the model are significant since the p-value for the spatial error model are all less than 
0.05. Based on the Breusch-Pagan test which has a p-value less than 0.05, we can reject the Null 
Hypothesis that the residuals are homoscedastic for the alternative hypothesis of 
heteroscedastic, which is problematic. 
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We use the AIC/SC, the Log Likelihood, and the Likelihood Ratio Test to compare the two 
models. The AIC and the SC results of the OLS model are 1432.99/1460.24, much higher than that 
of the spatial error model 755.381/782.631, indicating that the spatial error model fits better 
than the OLS. The Log Likelihood value of the spatial error model(-372.69) is higher than that of 
the OLS model(-711.49), again indicating the spatial error model is a better one. In Likelihood 
Ratio test, the p-value is less than 0.05, so we can reject the null hypothesis of the spatial error 
model is not a better specification than the OLS model. 

 
Figure 10: Geoda Moran’s I scatter plot & permutation plot 

 
 

Figure 11: R Moran’s I scatter plot & permutation plot 

 
 

The Moran’s I for the spatial error model is -0.095, closer to zero than that of the OLS model, 
suggesting that there seems to be less spatial autocorrelation in these residuals than in OLS 
residuals. The pseudo p-value of the 999 random permutation test for the spatial error model is 
0.001, indicating that the residuals are still spatially autocorrelated. However, both Moran’s I and 
the histogram are closer to the random distribution of Moran’s I, so we can draw the conclusion 
that there’s less spatial autocorrelation in the spatial error residuals compared with the OLS 
residuals.  
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In conclusion, according to all the above analysis, the spatial error model does better than 
the OLS model, since it has a better fit of the data and can explain the LNMEDHVAL better. 
 

When comparing the spatial lag model and the spatial error model, we cannot use the log 
likelihood, the likelihood ratio test, and the R-squared for comparison. However, it’s ok to 
compare them based on the AIC/SC value. The AIC/SC for the spatial lag model is 523.48/556.18, 
lower than the AIC/SC for the spatial error model, which is 755.381/782.631. So, the spatial lag 
model does better than the spatial error model. 
 
e) Geographically Weighted Regression Results 

Table 3.1 : Geographically Weighted Regression Results 
-------------------------------------------------------------------------- 
Call: 
gwr(formula = LNMEDHVAL ~ LNNBELPOV + PCTVACANT + PCTBACHMOR +  
    PCTSINGLES, data = shp, gweight = gwr.Gauss, adapt = bw,  
    hatmatrix = TRUE, se.fit = TRUE) 
Kernel function: gwr.Gauss  
Adaptive quantile: 0.008130619 (about 13 of 1720 data points) 
 
Summary of GWR coefficient estimates at data points: 
-------------------------------------------------------------------------- 
                   Min.    1st Qu.     Median    3rd Qu.       Max.  Global 
X.Intercept.  9.6727618 10.7143173 10.9542384 11.1742009 12.0831381 11.1138 
LNNBELPOV    -0.2365244 -0.0733572 -0.0401186 -0.0126657  0.0948768 -0.0789 
PCTVACANT    -0.0317407 -0.0142383 -0.0089599 -0.0035770  0.0167916 -0.0192 
PCTBACHMOR    0.0010974  0.0101380  0.0149279  0.0202187  0.0347258  0.0209 
PCTSINGLES   -0.0249706 -0.0075550 -0.0016626  0.0042280  0.0143340  0.0030 
-------------------------------------------------------------------------- 
Number of data points: 1720  
Effective number of parameters (residual: 2traceS - traceS'S): 360.5225  
Effective degrees of freedom (residual: 2traceS - traceS'S): 1359.477  
Sigma (residual: 2traceS - traceS'S): 0.2762201  
Effective number of parameters (model: traceS): 257.9061  
Effective degrees of freedom (model: traceS): 1462.094  
Sigma (model: traceS): 0.2663506  
Sigma (ML): 0.245571  
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 660.7924  
AIC (GWR p. 96, eq. 4.22): 308.7123  
Residual sum of squares: 103.7248  
Quasi-global R2: 0.8479244 
-------------------------------------------------------------------------- 

 
The GWR R-squared is 0.85, higher than the OLS R-squared, which is 0.66. This means that 

the GWR is doing a better job since it explains 20% more variance in the dependent variable. The 
AIC value of GWR is 308.71, lower than that of the OLS regression model and the spatial error 
model, which are 1432.9 and 755.3, and higher than the spatial lag model, which is 523.5. In this 
case, the GWR model fits better than the OLS model and the spatial error model, but no as well 
as the spatial lag model. 
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Figure 12:  Geoda Moran’s I scatter plot & permutation plot 

 
 
 

Figure 13: R Moran’s I scatter plot & permutation plot 

 
 

Moran’s I for the GWR model is 0.021, closer to zero than that of the OLS model, suggesting 
that there seems to be less spatial autocorrelation in these residuals than in OLS residuals.  The 
Moran’s I for the spatial lag model is -0.082, and for the spatial error, model is -0.095. Comparing 
all these three models, Moran’s I for the GWR model is the closest one to 0, therefore, the 
residuals in the GWR model have the least spatial autocorrelation. By looking at the residual 
histogram, the pseudo p-value of the 999 permutations is 0.065, which is larger than 0.05, 
meaning that there’s no longer spatial autocorrelation in the residuals in this model. 
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Figure 14: Choropleth map of standardized coefficient results 

 
 
 

The four maps in Figure 14 shows the local regression results for the four predictors. In 
general, the percentage of bachelor or more shows more positive relations with the median 
house value, and the percent of vacant and the number of households living in poverty have 
generally negative relationships with the median house value.  For the result of the regression 
between the percent of singles and the median house value, the variable has a generally positive 
effect on the dependent variable in the center, the northwest, and northeast Philadelphia, while 
in east and middle north Philly, it has a negative effect on the median house value.  
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Figure 15: Choropleth map of local R-squared results 

 
 

The Figure 15 shows the local R-squared results’ spatial distribution. The lowest R-squared 
distribution in the center-north and part of southwest Philadelphia, ranging from 0-0.2, meaning 
that in these places, about only 0%-20% of the variance in the median house values are explained 
by the predictors, is relatively poor. The highest R-squared appears in the northwest, northeast, 
and part of south Philadelphia, ranging from 0.6-0.7, which means about 60%-70% of the 
dependent variable can be explained by the four predictors, indicating the predictors and the 
dependent variable have more correlation in these areas. 

 

4.  Discussion  
In this project, we conducted the OLS regression to predict the median house values in 

Philadelphia. However, the results of the OLS model show the residuals have significant spatial 
autocorrelation with each other and that means there might be problems of under-or-over-
prediction in certain areas. So, we also use the spatial lag model, the spatial error model, and the 
GWR model to help improve the results, which can explicit spatial interaction in residuals and can 
address the possible influence of spatial autocorrelation on simple linear regression models that 
assume spatial independence. After comparing all these four models, the GWR model has the 
lowest AIC value, which means it has the best fitness in predicting the median house value. In 
addition, all three models do better than the original OLS model. 
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Though our three models can provide more explanations for the prediction, there are still 
some limitations. For both spatial lag and spatial error models, the pseudo-p-values are all 0.001, 
lower than 0.05, meaning that there’s still spatial autocorrelation in the residuals in each model. 
The results of the Breusch-Pagan test for both the spatial lag and the spatial error model show 
the p-value are all less than 0.05, so we can reject the null hypothesis that the residuals are 
homoscedastic for the alternative hypothesis of heteroscedastic, which is problematic. In 
conclusion, although the spatial lag and spatial error model does better than the OLS model, they 
still cannot fully explain the spatial autocorrelation in residuals. 
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