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The Application of Logistic Regression to Examine the Predictors of Car 

Crashes Caused by Alcohol  

Yuewen Dai, Xinge Zhang, Yingxue Ou 

 

1) Introduction 

In Philadelphia, there’s an average of 30 people die every day in a motor vehicle accident caused 
by a drunk driver, which is a terrible statistic. This has caused individuals injured as well as 
negative economic impact. It is necessary to analyze the factors related to these accidents in 
order to predict drunk driving to reduce the accident rate and better protect the safety of the 
public. So, we acquired the drinking driver data and the possible related predictors, such as the 
collision reason, the crash result (fatality or major injury), the status of driving before the crash 
(speeding, overturned, etc.), driver’s age (between 16-17, more than 65), and census data. These 
data belong to the dataset of all 53,260 car crashes in Philadelphia for the year 2008-2012. 

Our goal in this research is to identify predictors of accidents related to drunk driving. To predict 
the drunk driving, we should run the Logistic regression in R to see the extent to which drunk 
driving might be associated with the predictors. Since the drunk driving data is binary (0&1), and 
our goal is to predict the probability (ranges 0-1) that the drunk driving might happen, we cannot 
use the OLS method which we have been using for the past two assignments because the result 
might exceed 1 or less than 0.  

 

2) Methods 

2.1 The problem with using OLS regression when the dependent variable is binary 

In OLS regression, the data we are dealing with are continuous variables (with errors normally 
distributed), which have no upper and lower boundaries for the value. But for binary variables, 
there are only two values, True=1 and False=0. In the OLS equation, if we’re dealing with binary 
variables, instead of predicting Y, we’re predicting P(Y=1|X=x), the probability that Y=1. So, 
the equation would be: 

𝑃𝑃(𝑌𝑌 = 1) = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜀𝜀 

But it’s obvious that the probability of Y will increase with x increases and decrease with x 
decreases, and the value has no upper and lower boundaries. So, if we continue using OLS 
regression as the predicting method, this will lead to a problem where the predicted probability 
will be more than 1 or less than 0, which is clearly incorrect.  This is why we have to introduce 
logistic regression method to deal with the binary dependent variable. 
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2.2 The method of Logistic Regression  

The logit model with one predictor looks like the following equations where p equals P(Y=1): 

ln �
𝑝𝑝

1 − 𝑝𝑝�
= 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝜀𝜀 

 

The quantity 𝑝𝑝
1−𝑝𝑝

 is called the odds, and ln � 𝑝𝑝
1−𝑝𝑝

� is called log odds. The odds can be calculated 
as #desirable outcomes/ #undesirable outcomes, which means the probability that one event will 
occur divided by the probability that the event will not occur.  

The equation of logistic model with one predictor looks like this: 

 

𝑝𝑝 =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1
=

1
1 + 𝑒𝑒−𝛽𝛽0−𝛽𝛽1𝑥𝑥1

 

 

The odds ratio 𝑒𝑒𝛽𝛽𝑖𝑖 is a statistic that quantifies the strength of the association between two 
events,[1] for example, the ratio of the odds of A in the presence of B and the odds of A in the 
absence of B. The odds ratio can range from 0 to infinity, when it is smaller than 1, it indicates 
that there’s a negative association between the predictor i and the dependent variable; when it’s 
equal to 1, it means there’s no relationship between them; and when it’s larger than 1, meaning 
that there’s a positive association.  

In this report, the above equations can be written in the logit form: 

 

ln �
𝑝𝑝

1 − 𝑝𝑝
|𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 𝑑𝑑𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

= 𝛽𝛽0 + 𝛽𝛽1𝐹𝐹𝐹𝐹𝑇𝑇𝐹𝐹𝐿𝐿𝑂𝑂𝑅𝑅𝑀𝑀 +  𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑇𝑇𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, +𝛽𝛽3𝐶𝐶𝑂𝑂𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑂𝑂𝑃𝑃𝑃𝑃 + 𝛽𝛽4 𝑆𝑆𝑃𝑃𝑂𝑂𝑂𝑂𝑂𝑂𝐸𝐸𝑂𝑂𝐸𝐸
+ 𝛽𝛽5 𝐹𝐹𝐸𝐸𝐸𝐸𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆𝐸𝐸𝑂𝑂𝑂𝑂, +𝛽𝛽6𝑂𝑂𝑂𝑂𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂1617 + 𝛽𝛽7 𝑂𝑂𝑂𝑂𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂65𝑃𝑃𝐿𝐿𝑂𝑂𝑆𝑆
+ 𝛽𝛽8𝑃𝑃𝐶𝐶𝑇𝑇𝑃𝑃𝐹𝐹𝐶𝐶𝑃𝑃𝑃𝑃𝑂𝑂𝑂𝑂 + 𝛽𝛽9𝑃𝑃𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃𝐸𝐸𝑂𝑂𝐶𝐶 + 𝛽𝛽10𝐶𝐶𝑂𝑂𝐿𝐿𝐿𝐿𝐸𝐸𝑆𝑆𝐸𝐸𝑂𝑂𝑂𝑂 + 𝜀𝜀 

 

Or the logistic form*: 

𝑝𝑝(𝑇𝑇ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑒𝑒𝑑𝑑 𝑑𝑑𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) =
𝑒𝑒𝛽𝛽𝑖𝑖

1 + 𝑒𝑒𝛽𝛽𝑖𝑖
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*To let the formula looks more simple, I set: 

𝜷𝜷𝒊𝒊= 𝜷𝜷𝟎𝟎 + 𝜷𝜷𝟏𝟏𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑳𝑳𝑶𝑶𝑹𝑹𝑴𝑴 + 𝜷𝜷𝟐𝟐𝑶𝑶𝑶𝑶𝑶𝑶𝑹𝑹𝑭𝑭𝑶𝑶𝑹𝑹𝑶𝑶𝑶𝑶𝑶𝑶, +𝜷𝜷𝟑𝟑𝑪𝑪𝑶𝑶𝑳𝑳𝑳𝑳𝑷𝑷𝑷𝑷𝑶𝑶𝑶𝑶𝑶𝑶 + 𝜷𝜷𝟒𝟒 𝑺𝑺𝑷𝑷𝑶𝑶𝑶𝑶𝑶𝑶𝑺𝑺𝑶𝑶𝑺𝑺 + 𝜷𝜷𝟓𝟓 𝑭𝑭𝑺𝑺𝑺𝑺𝑹𝑹𝑶𝑶𝑺𝑺𝑺𝑺𝑺𝑺𝑶𝑶𝑶𝑶, +𝜷𝜷𝟔𝟔𝑶𝑶𝑹𝑹𝑺𝑺𝑶𝑶𝑶𝑶𝑹𝑹𝟏𝟏𝟔𝟔𝟏𝟏𝑫𝑫 +
𝜷𝜷𝑫𝑫 𝑶𝑶𝑹𝑹𝑺𝑺𝑶𝑶𝑶𝑶𝑹𝑹𝟔𝟔𝟓𝟓𝑷𝑷𝑳𝑳𝑶𝑶𝑺𝑺 + 𝜷𝜷𝟖𝟖𝑷𝑷𝑪𝑪𝑭𝑭𝑷𝑷𝑭𝑭𝑪𝑪𝑷𝑷𝑴𝑴𝑶𝑶𝑹𝑹 + 𝜷𝜷𝟗𝟗𝑴𝑴𝑶𝑶𝑶𝑶𝑷𝑷𝑷𝑷𝑺𝑺𝑶𝑶𝑪𝑪 + 𝜷𝜷𝟏𝟏𝟎𝟎 𝑪𝑪𝑶𝑶𝑳𝑳𝑳𝑳𝑺𝑺𝑺𝑺𝑺𝑺𝑶𝑶𝑶𝑶 

 

Dependent variable: 

p: P (The driver is drunk), the probability of the driver is drunk. 

Binary variables: 

β1: Crash resulted in fatality or major injury multiplies by 𝑒𝑒𝛽𝛽1  the probability of when the driver 
is drunk compared to not resulted in fatality of major injury.   

β2: Crash involves an overturned vehicle multiplies by 𝑒𝑒𝛽𝛽2 the probability of when the driver is 
drunk compared to not involves an overturned vehicle. 

β3: Crash happens when driver is using cell phone multiplies by 𝑒𝑒𝛽𝛽3 the probability of when the 
driver is drunk compared to the driver is not using cell phone. 

β4: Crash involves speeding car multiplies by 𝑒𝑒𝛽𝛽4 the probability of when the driver is drunk 
compared to not involves speeding car. 

β5: Crash involves aggressive driving multiplies by 𝑒𝑒𝛽𝛽5 the probability of when the driver is 
drunk compared to not involves aggressive driving. 

β6: Crash involves at least one driver who was 16 or 17 years old multiplies by 𝑒𝑒𝛽𝛽6 the 
probability of when the driver is drunk compared to not involves at least one driver who was 16 
or 17 years old. 

β7: Crash involves at least one driver who was at least 65 years old multiplies by 𝑒𝑒𝛽𝛽7 the 
probability of when the driver is drunk compared to not involves at least one driver who was at 
least 65 years old. 

Continuous variables: 

β8: An increase of 1 unit in % of individuals 25 years of age or older who have at least a 
bachelor’s degree in the Census Block Group where the crash took place multiplies the odds of 
drunk driver by 𝑒𝑒𝛽𝛽8 

β9: An increase of 1 unit in Median household income in the Census Block Group where the 
crash took place multiplies the odds of drunk driver by 𝑒𝑒𝛽𝛽9 

Category variable: 

β10: Going up from 1 category of collision to the next multiplies the odds of heart disease by 
𝑒𝑒𝛽𝛽10. 
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Figure2.1 The logit function and the logistic function 

(Source: http://www.graphpad.com/support/faqid/1465/) 

The Figure 2.1 shows the comparison between the logit function and the logistic function. The 
outcomes of the logit function have no upper and lower boundaries, P between 0-0.5 has 
negative logit values and P between 0.5-1 has positive logit values that can tend to be infinity. 
The logistic function predicts the logarithm of the odds, it is a model that always predict a value 
of probability that is between 0-1. Since we want to predict the probability of the binary 
outcome, and the probability ranges between 0-1, the logistic function is obviously a more 
appropriate one. 

 

2.3 Hypothesis testing 

We are doing the hypothesis test for each of the predictors: 

𝑃𝑃0:𝛽𝛽𝑖𝑖 = 0 (𝑂𝑂𝑂𝑂𝑖𝑖 = 1) 

𝑃𝑃𝑎𝑎:𝛽𝛽𝑖𝑖 ≠ 0 (𝑂𝑂𝑂𝑂𝑖𝑖 ≠ 1) 

The Null Hypothesis can be interpreted as the odds ratio equals to 1, meaning that there’s no 
relationship between the predictor i and the dependent variable. And the Alternative Hypothesis 
can be interpreted as there’s a relationship between the predictor and the dependent variable. The 
p-value is obtained from the standard normal z tables to test the null hypothesis. The z-value, 𝛽𝛽

�𝑖𝑖
𝜎𝜎𝛽𝛽�𝑖𝑖

, 

also called Wald statistic, can be used to do the testing because it has a standard normal 
distribution.  

When we are testing the relationship between the dependent variable and each predictor, instead 
of estimating the β coefficient, we look at odds ratios. If the ORi is smaller or larger than 1, then 
we can reject the null hypothesis that there’s no relationship between the predictor and the 
dependent variable. Estimating the OR can give us a more intuitive result in the test. 

http://www.graphpad.com/support/faqid/1465/
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2.4 Assess the quality of model fit 

In the logistic regression, we also calculate the R-squared value for each of the predictor, and 
same as the OLS model, the higher the R-squared, the better the model. However, the R-squared 
is no longer as important as in OLS regression, because it cannot be interpreted as the percent of 
variance explained by the model. Instead, statisticians have come up with a variety of analogues 
of R squared for multiple logistic regression that they refer to collectively as “pseudo-R 
squared”. These do not have the same interpretation.[2] 

When comparing different models with different predictors, one of the ways we can use is to 
compare the AIC values. The Akaike Information Criterion (AIC) is an estimator of 
prediction error and thereby relative quality of statistical models for a given set of data.[3] AIC 
estimates the relative amount of information lost by a given model: the lower the AIC, the better 
the model is. 

When we are dealing with the residuals in logistic regression, it can still be defined as 𝜀𝜀 = 𝑦𝑦𝑖𝑖 −
𝑦𝑦�𝑖𝑖, same with the OLS regression, but the interpretation can be different, here, 𝑦𝑦�𝑖𝑖 is a probability 
that Y=1 (in our report, the driver is drunk), it ranges from 0 to 1. It can be presented in the 
equation: 

𝑃𝑃(𝑌𝑌 = 1) = 𝑦𝑦�𝑖𝑖 =
𝑒𝑒𝛽𝛽�0+𝛽𝛽�1𝑥𝑥1𝑖𝑖+⋯+𝛽𝛽�3𝑥𝑥3𝑖𝑖

1 + 𝑒𝑒𝛽𝛽�0+𝛽𝛽�1𝑥𝑥1𝑖𝑖+⋯+𝛽𝛽�3𝑥𝑥3𝑖𝑖
 

Our main goal is to predict precisely, to be more specific, we hope the model can predict a high 
value of Y=1 if the Y is actually 1 (in our report, the driver is actually drunk), and a low 
probability of Y=1 if the Y is actually 0(in our report, the driver is actually not drunk). In other 
words, we hope to keep the residuals as small as possible. 

To define whether the probability of Y=1(drunk driving) is high or low, we should apply a “cut-
off” rate to help us divide the predicted values into two groups. The “cut-off” value is usually 
chosen by looking at the distribution of values in the histogram. The values whose probabilities 
are above the threshold will be defined as positives and the values whose probabilities are below 
the threshold will be defined as negatives. If the cut-off rate is set to be too high, there might be 
less predicted positives than actual, and if it is set to be too low, there might be less predicted 
negatives than actual. It’s important to find the optimal rate to improve the model’s accuracy. 

There's a more direct way for us to test the accuracy of the model, that is, to test the Sensitivity 
(true positive rate), the Specificity (true negative rate), and the misclassification rate of the 
model. The Sensitive measures the proportion of actual positives which are correctly predicted, 
the Specificity measures the proportion of negatives which are correctly predicted, and the 
misclassification rate measures the proportion of predicted values which are falsely identified as 
such. In our report, the sensitivity is the proportion of the drivers we correctly predicted as 
drunk. To achieve our goal of increasing the model’s accuracy, we should improve the model’s 
sensitivity and specificity, and try to decrease the misclassification rate. It can be done by finding 
the optimal threshold, as I stated in the previous paragraph. 
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We can use the ROC curves to examine the predictive ability of our model and find the best cut-
off rate. The ROC curve is a plot shows the true positive rate(sensitivity) against the false 
positive rate(1-specificity). 

 

Figure2.2 The ROC curve 

(Source: http://gim.unmc.edu/dxtests/roc3.htm ) 

There’s a 45-degree line in the middle of the plot, where the true positive rate equals to the false 
positive rate, and it’s the worthless ROC. The ROC curve we will have generated should be 
above this worthless curve, and best one will have the highest true positive related to the lowest 
false positive rate, it will be close to the left and up boundaries of the plot. We can use the 
Youden Index or calculating the minimum distance from the upper left corner to identify the 
optimal cut-off. The Youden Index is a cut-off for which the specificity + sensitivity value is 
maximized, and similar with minimizing the curve’s distance from the upper left corner, where 
the specificity=sensitivity=1, the closer the curve goes to the corner, the higher the specificity + 
sensitivity is. In this report, we will use the method of minimizing distance from upper left 
corner to find the optimal cut-off.  

Also, we would like to calculate the Area Under ROC Curves (AUC) to measure the prediction 
accuracy, a better model has higher AUC value. AUC can be interpreted as the probability that 
the model correctly ranks two randomly selected observations where one has Y=1 and the other 
one has Y=0. The higher the AUC, the larger the value sensitivity + specificity is, which can be 
used to evaluate the cut-offs. The possible AUC values range between 0.5 to 1, 0.9-1 stands for 
an excellent model, 0.8-0.9 meaning the model is good and 0.7-0.8 represents a fair model. 
Generally, we can say that a model with an AUC of more than 0.7 is just fine. A model with an 
AUC which is between 0.6-0.7 is a poor one and if the AUC ranges between 0.6-0.5, the model 
fails. 

 

 

http://gim.unmc.edu/dxtests/roc3.htm
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2.5 The assumptions of logistic regression 

Comparing the OLS regression and the logistic regression, both methods have the assumptions 
that there’s no multicollinearity. However, in the logistic regression, the dependent variable must 
be binary, and there’s no assumption that there needs to be linear relationship between the 
dependent variable and the independent variables, and the residuals don’t need to be normally 
distributed. In OLS regression, we assume that there’s homoscedasticity, but in logistic 
regression, we assume there’s not. 

 

2.6 Exploratory analysis 

Before running logistic regression, most of the statisticians run cross-tabulations and use the Chi-
Square to test whether there’s association between the binary dependent variable and one 
categorical independent variable, said differently, whether the proportion of the results of one 
categorical variable varies with respect to another categorical variable. For example, in our 
report, whether the distribution of the drunk drivers varies with respect to the values of the 
fatalities for crash. The null hypothesis and the alternative hypothesis would be like: 

• H0: the proportion of fatalities for crashes that involve drunk drivers is the same as the 
proportion of fatalities for crashes that don’t involve drunk drivers. 

• Ha: the proportion of fatalities for crashes that involve drunk drivers is different than the 
proportion of fatalities for crashes that don’t involve drunk drivers. 

For the continuous variable, we can compare the mean values of the continuous predictor for the 
different levels of the dependent variable. We employ a test called the independent samples t-test 
to do it. For the variable PCTBACHMOR, the null hypothesis and the alternative hypothesis for 
the independent samples t-test would be like: 

• H0: the average values of the variable PCTBACHMOR are the same for crashes that 
involve drunk drivers and crashes that don’t. 

• Ha: the average values of the variable PCTBACHMOR are different for crashes that 
involve drunk drivers and crashes that don’t. 

 

3) Results.  

3.1 Exploratory results 
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Table3.1 Summary statistics 

Firstly, we summarized and looked at the distributions of the dependent variable. In this case, it 
is DRINKING_D (Drinking driver indicator 1 = Yes, 0 = No). From table 3.1, we can see that 
the portion of drunk drivers in our dataset is quite small, which means there might be a tendency 
for the model to predict better in the no-drinking driver cases. 

 

Table3.2 Try cross-tabulation of the dependent variable and independent variables: 

The null hypothesis of the Chi-Square tests between all the independent variables 
(FATAL_OR_M, OVERTURNED, CELL_PHONE, SPEEDING, AGGRESSIVE, 
DRIVER1617, DRIVER65PLUS) and the dependent variable (DRINKING_D) is that there is no 
relationship between the independent and the dependent variable. As is customary in the social 
sciences, we'll set our alpha level at 0.05. From table 3.2, we can see that only the p-value, 
0.687, of CELL-PHONE is higher than 0.05, which means we cannot reject the null hypothesis. 
Said differently, whether the driver was using a cell phone is not significantly associated with 
whether the driver is drinking alcohol. 

 

Table3.3 Try a t-test between the continuous predictors and the dependent variable 
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The null hypothesis of the t-test between the continuous predictors (PCTBACHMOR, 
MEDHHINC) and the dependent variable (DRINKING_D) is that there is no relationship 
between the independent and the dependent variable. As is customary in the social sciences, we'll 
set our alpha level at 0.05. From table 3.3, we can see both the p-value of PCTBACHMOR 
(0.91), MEDHHINC (0.16) are higher than the alpha level. Thus, we cannot reject the null 
hypothesis of the t-test. Said differently, there is no significant association between the 
dependent variable and each of the continuous predictors. 

 

Figure3.1 Pearson correlation matrix between all the predictors 

 

Table3.4 Pearson correlation between all the predictors 
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Within the context of regression analysis, we deal with the assumption of no multicollinearity -- 
or, in other words, the assumption of no strong linear correlation between predictors. We use the 
pairwise Pearson correlation matrix to evaluate it this time, from the correlation matrix, we can 
notice that all the absolute values of r lie between 0.01 to 0.48 (<0.8), and there isn’t severe 
multi-collinearity between the predictors, that is the predictors are not very strongly correlated 
with each other.  

However, since we are using Pearson correlations to measure the associations between binary 
predictors and continuous predictors, it is important that all correlations computed are 
comparable. The correlation between the binary variables might not be linear. And the 
distributions of the binary predictors are likely to be skewed. Thus, using Pearson correlation 
here has a severe limitation.  

 

3.2 Regression results   

 

Figure3.2 The output of regression results of all predictors 
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Table3.5 The output of summary table 

 

 

As we can see, FATAL_OR_M, OVERTURNED, SPEEDING, AGGRESSIVE, 
DRIVER1617, DRIVER65PLUS are significant. CELL_PHONE, PCTBACHMOR, 
MEDHHINC are not significant. We can interpret each one of them as follows: 

 

INTERCEPT: 

The estimate is -2.732. In this case, the estimated coefficient for the intercept (-2.732) is the log 
odds of the driver being drunk where all predictors are 0.  

Said differently, -2.732 is the log odds of the driver being drunk where 

• FATAL_OR_M = 0 (i.e., Crash did not result in fatality or major injury), AND 

• OVERTURNED = 0 (i.e., Crash did not involve an overturned vehicle), AND 

• SPEEDING = 0   (i.e., Crash did not involve speeding car), AND 

• AGGRESSIVE = 0  (i.e., Crash did not involve aggressive driving), AND 

• DRIVER1617 = 0 (i.e., Crash did not involve at least one driver who was 16 or 17 
years old), AND 

• DRIVER65PLUS = 0 (i.e., Crash did not involve at least one driver who was at 
least 65 years old), AND 

• CELL_PHONE = 0  (i.e., Driver was not using cell phone), AND 

• PCTBACHMOR = 0  (i.e., 0% of individuals 25 years of age or older who have at 
least a bachelor’s degree in the Census Block Group where the crash took place) 

• MEDHHINC = 0 



CPLN 671/MUSA500 

 12 

 

FATAL_OR_M: 

The estimate is 0.8140. This means that for a 1 unit increase in FATAL_OR_M: (i.e., as we go 
from crash did not result in fatality or major injury to crash resulted in fatality or major injury), 
the log odds of the driver being drunk go up by 0.814, holding other predictors constant. 

Said differently, a 1 unit increase in FATAL_OR_M: (i.e., as we go from crash did not result in 
fatality or major injury to crash resulted in a fatality or major injury), he odds of the driver was 
drunk change by (𝑒𝑒𝛽𝛽1 − 1) ∗ 100% = (2.257 − 1) ∗ 100% = 125.7%, holding other predictors 
constant. 

 

OVERTURNED: 

The estimate is 0.9289. This means that for a 1 unit increase in OVERTURNED (i.e., as we go 
from crash did not involve an overturned vehicle to involve an overturned vehicle), the log odds 
of there being a drunk driver go up by .9289, holding other predictors constant. 

Said differently, for a 1 unit increase in OVERTURNED (i.e., as we go from crash did not 
involve an overturned vehicle to involve an overturned vehicle), the odds of a crash did not 
involve a drunk driver change by (𝑒𝑒𝛽𝛽1 − 1) ∗ 100% = (2.532 − 1) ∗ 100% = 153.2%, holding 
other predictors constant.  

 

SPEEDING: 

The estimate is 1.538. This means that for a 1 unit increase in SPEEDING, the log odds of there 
being a drunk driver increase by 1.538, holding other predictors constant. 

Said differently, for a 1 unit increase in SPEEDING, the odds of there being a drunk driver 
change by (𝑒𝑒𝛽𝛽1 − 1) ∗ 100% = (4.65527 − 1) ∗ 100% = 365.5% -- that is, they go up by 
365.5%, holding other predictors constant.  

 

AGGRESSIVE: 

The estimate is -0.59691. This means that for a 1 unit increase in AGGRESSIVE (i.e., as we go 
from crash-involved aggressive driving to crash did not involve aggressive driving), the log odds 
of there being a drunk driver go down by 0.597, holding other predictors constant. 

Said differently, for a 1 unit increase in AGGRESSIVE (i.e., as we go from crash-involved 
aggressive driving to crash did not involve aggressive driving), the odd of there being a drunk 
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driver change by  (𝑒𝑒𝛽𝛽1 − 1) ∗ 100% = (0.5505 − 1) ∗ 100% = −44.94%, holding other 
predictors constant. 

 

DRIVER1617: 

The estimate is -1.2803. This means that for a 1 unit increase in DRIVER1617 (i.e., as we go 
from a crash that did not involve at least one driver who was 16 or 17 years old to a crash did 
involve at least one driver who was 16 or 17 years old), the log odds of there being a drunk 
driver go down by 1.2803, holding other predictors constant. 

Said differently, for a 1 unit increase in DRIVER1617 (i.e., as we go from a crash that did not 
involve at least one driver who was 16 or 17 years old to a crash that did involve at least one 
driver who was 16 or 17 years old), the odds of there being a drunk driver changed by (𝑒𝑒𝛽𝛽1 −
1) ∗ 100% = (0.2779539 − 1) ∗ 100% = −72.20%, holding other predictors constant. 

 

DRIVER65PLUS： 

The estimate is -0.7747. This means that for a 1 unit increase in DRIVER65PLUS (i.e., as we go 
from a crash did not involve at least one driver who was at least 65 years old to a crash did 
involve at least one driver who was at least 65 years old), the log odds of there being a drunk 
driver go down by 0.7747, holding other predictors constant. 

Said differently, for a 1 unit decrease in DRIVER65PLUS (i.e., as we go from a crash did not 
involve at least one driver who was at least 65 years old to a crash did involve at least one driver 
who was at least 65 years old), the odds of there being a drunk driver changed by (𝑒𝑒𝛽𝛽1 − 1) ∗
100% = (0.460842 − 1) ∗ 100% = −53.92%, holding other predictors constant. 

 

3.3 Model evaluation   

From the table 3.6, we can see the misclassification rates are negatively correlated with the cut-
off values. The lowest cut-off values yielded the highest misclassification rates. And the highest 
cut-off values yielded the lowest misclassification rates.  This might relate to there being more 
false cases in our dataset (mentioned in part 3.1.1). 
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Table3.6 Specificity, sensitivity, and misclassification rates for the different cut-offs 

 

 

 

Figure3.3 The ROC curve selected by the optimal cut-off rate 

 

The ROC curve is a way to plot the true positive rate (sensitivity) against the false positive rate 
(1 - specificity). A cut-off for which the ROC curve has the minimum distance from the upper 
left corner of the graph – i.e., the point at which specificity = 1 and sensitivity = 1. This is just a 
different way of maximizing specificity and sensitivity. We can get the optimal cut-off point and 
corresponding sensitivity and specificity. 
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The area under the ROC curve = 0.6398695 (AUC, which stands for Area Under Curve) is a 
measure of the prediction accuracy of the model (how well a model predicts 1 response as 1’s 
and 0 responses as 0’s). Higher AUCs means that we can find a cut-off value for which both 
sensitivity and specificity of the model are relatively high. In this case, AUC is between .60-.70. 
This means the model might be poor in prediction.  

 

Figure3.4 The results of the logistic regression with the binary predictors only 

 

Table 3.7 The output of summary table 
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From the table 3.7 above, we can see there are no predictors which are significant in the new 
model but weren’t significant in the original one.  Also, we can see that the Akaike Information 
Criterion (AIC) for both models is nearly the same (different less than 3), which means 
including the continuous variable in the regression does not affect the quality of the regression 
model in the end. 

 

4) Discussion and Limitations 

FATAL_OR_M, OVERTURNED, SPEEDING, AGGRESSIVE, DRIVER1617, and 
DRIVER65PLUS are strong predictors of crashes that involve drunk driving. CELL_PHONE, 
PCTBACHMOR, and MEDHHINC are not associated with the dependent variable. The results 
are not surprising.  Because from the previous parts, the chi-square test result shows that 
CELL_PHONE, PCTBACHMOR, and MEDHHINC are not significantly related to the 
dependent variable. 

In this case, using logistic regression might have a problem, because the total size of the dataset 
is not large enough and the % of cases with values of ‘1’ for the dependent variable is too small, 
which means that the model might perform better in predicting ‘0’ cases.  Also, since we are 
using Pearson correlations in evaluating the correlations between binary predictors, there might 
be a risk that predictors have nonlinear relation with each other. 
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